

How to use Java 8 Optional with Hibernate

www.thoughts-on-java.org

Optional attributes
If you use Optional<T> as a data type, Hibernate cannot determine
the type of the attribute and throws a MappingException.

To avoid this Exception, you have to use field-type access and keep
the original data type of the attribute. The field-type access allows
you to implement the getter and setter methods in your own way.

You can, for example, implement a getPublishingDate() method
which wraps the publishingDate attribute in an Optional<LocalDate>.

@Entity

public class Book {

 @Column

 private LocalDate publishingDate;

 ...

 public Optional getPublishingDate() {

 return Optional.ofNullable(publishingDate);

 }

 public void setPublishingDate(LocalDate publishingDate) {

 this.publishingDate = publishingDate;

 }

}

http://www.thoughts-on-java.org/

How to use Java 8 Optional with Hibernate

www.thoughts-on-java.org

Load optional entities
 Hibernate 5.2 also introduced the loadOptional(Serializable id)
method to the IdentifierLoadAccess interface which returns an
Optional<T>. You should use this method to indicate that the result
might be empty when you can’t be sure that the database contains a
record with the provided id.

The loadOptional(Serializable id) method is similar to the
load(Serializable id) method which you already know from older
Hibernate versions. It returns the loaded entity or a null value if no
entity with the given id was found. The new loadOptional(Serializable
id) method wraps the entity in an Optional<T> and therefore
indicates the possibility of a null value.

Session session = em.unwrap(Session.class);

Optional<Book> book = session.byId(Book.class).loadOptional(1L);

if (book.isPresent()) {

log.info(“Found book with id [“ + book.get().getId()

+ ”] and title [“+book.get().getTitle()+”].”);

} else {

log.info(“Book doesn’t exist.”);

}

http://www.thoughts-on-java.org/

